
Find My Network Accessory
Specification
Draft v1
R3

 

 Developer
Contents
 

1. Introduction 8
1.1. Requirements, recommendations, and permissions...8
1.2. Terminology ..9

2. Core Concepts 10
2.1. Overview...10
2.2. Find My app ..10
2.3. Transport ..10
2.4. Operation ..10
2.5. Roles...10

2.5.1.Owner device ...10
2.5.2.Accessory ...11
2.5.3.Find My network ...11
2.5.4.Apple server ...12

2.6. Features..12
2.6.1.Unwanted tracking detection ..12
2.6.2.Lost mode...12
2.6.3.Play sound..12

2.7. States..12
2.7.1.Unpaired...13
2.7.2.Connected ..14
2.7.3.Nearby..14
2.7.4.Separated...14

3. Requirements 15
3.1. Overview...15
3.2. General ...15
3.3. Hardware ..15

3.3.1.Bluetooth ..15
3.3.1.1.Accessories that advertise non-Find My network Bluetooth payload

16
3.3.1.1.1.Find My device naming ...16

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

2

3.3.2.Product-specific requirements..16
3.3.3.Find My on-product mark ...17
3.3.4.Serial number requirement...17
3.3.5.Serial number lookup ...17
3.3.6.Find My network disable...18
3.3.7.Find My network pairing mode ...18
3.3.8.Reset ..18
3.3.9.Clock accuracy ...18

3.4. Cryptography ..19
3.4.1.Operations..19
3.4.2.Implementation...19

3.4.2.1.Endianness and wire format...19
3.4.2.2.Random scalar generation ...20
3.4.2.3.Scalar validation...20
3.4.2.4.Elliptic curve point validation ..20
3.4.2.5.ECDSA signature verification ...21
3.4.2.6.ECIES encryption...21
3.4.2.7.AES-GCM decryption...21
3.4.2.8.Random generation..22

3.5. Software authentication ..22
3.6. Apple server public keys...22
3.7. Power cycle ..23
3.8. Firmware updates ...23

4. Bluetooth Requirements 24
4.1. Overview...24
4.2. Bluetooth advertising ..24
4.3. Bluetooth connection ..24
4.4. Bluetooth host...24

4.4.1.Services..24
4.4.2.MTU size...24
4.4.3.Link encryption key...25
4.4.4.Handling concurrent operations..25
4.4.5.Time-out ...25
4.4.6.Indications ..25

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

3

4.5. Accessory non-owner service...25
4.5.1.Service ...25
4.5.2.Byte transmission order..25
4.5.3.Characteristics..26

4.5.3.1.Product data...27
4.5.3.2.Manufacturer name ..28
4.5.3.3.Model name ...28
4.5.3.4.Accessory category..28
4.5.3.5.Protocol Implementation Version ...28
4.5.3.6.Accessory capabilities..29
4.5.3.7.Firmware version..29
4.5.3.8.Find My network version ..30
4.5.3.9.Battery type ..30
4.5.3.10.Battery level ...31
4.5.3.11.Network ID..31
4.5.3.12.Non-owner control point ...31
4.5.3.13.Non-owner control point procedures ..32

4.5.3.13.1.Play sound—Non-owner control point ..32

4.5.3.13.2.Get Serial Number..33

4.6. Find My network service ...33
4.6.1.Service ...33
4.6.2.Byte transmission order..33
4.6.3.Characteristics..33

4.6.3.1.Pairing control point ...34
4.6.3.2.Pairing control point procedures ..34

4.6.3.2.1.Initiate pairing ...35

4.6.3.2.2.Send pairing data ...35

4.6.3.2.3.Finalize pairing ...35

4.6.3.2.4.Send pairing status...36

4.6.3.2.5.Pairing complete...36

4.6.3.3.Configuration control point ...37
4.6.3.4.Configuration control point procedures ..38

4.6.3.4.1.Play sound—owner control point..38

4.6.3.4.2.Persistent connection status...38

4.6.3.4.3.Set nearby timeout ...38

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

4

4.6.3.4.4.Unpair ...39

4.6.3.4.5.Configure separated state ..39

4.6.3.4.6.Latch separated key ...39

4.6.3.4.7.Set max connections ..40

4.6.3.4.8.Set UTC..40

4.6.3.4.9.Keyroll indication ..40

4.6.3.4.10.Command response ...41

4.6.3.4.11.Get multi status response ...41

4.6.3.5.Paired owner information control point...41
4.6.3.6.Paired owner information control point procedures......................43

4.6.3.6.1.Get Current Primary Key ..43

4.6.3.6.2.Get iCloud Identifier..43

4.6.3.6.3.Command Response..43

4.6.3.7.Debug control point ..43
4.6.3.8.Debug control point procedures ...44

4.6.3.8.1.Set key rotation time-out...44

4.6.3.8.2.Retrieve logs...44

4.6.3.8.3.Reset ..45

4.6.3.8.4.UT motion timers config..45

4.7. Firmware update service ..45
4.7.1.Service ...45
4.7.2.Byte transmission order..45
4.7.3.Characteristics..45

4.7.3.1.Data control point ...46
4.8. Fragmentation and reassembly ..46
4.9. Service availability ..47
4.10.Serial number payload information ..47

4.10.1.Encrypted serial number payload ...48

5. Advertisements 49
5.1. Bluetooth LE advertising...49

5.1.1.Payload for pairing ...49
5.1.2.Payload for nearby state ..49
5.1.3.Payload for separated state ...50
5.1.4.Advertisement in low battery state ...51

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

5

6. Pairing and Key Management 52
6.1. Overview...52
6.2. Pairing...53

6.2.1.Pairing mode ..53
6.2.2.Generate pairing data...53
6.2.3.Send pairing data ...53
6.2.4.Finalize pairing ...54
6.2.5.Validate and confirm pairing ...54
6.2.6.Send pairing status...55

6.3. Key management..56
6.3.1.Key definitions ..56
6.3.2.Key sequences and rotation policy...56
6.3.3.Bluetooth advertisement key selection policy...56

6.3.3.1.After pairing..56
6.3.3.2.Nearby to nearby state transition ...56
6.3.3.3.Nearby to separated state transition ..56
6.3.3.4.Separated to separated state transition57
6.3.3.5.Separated to connected / nearby state transition.........................57
6.3.3.6.After power cycle..57

6.3.4.Key schedule definitions...57
6.3.4.1.Collaborative key generation..57
6.3.4.2.Derivation of primary and secondary keys58
6.3.4.3.Derivation of link encryption key LTKi ..58
6.3.4.4.Derivation of ServerSharedSecret ...58
6.3.4.5.Derivation of pairing session key K1 and initialization vector IV1 59
6.3.4.6.Derivation of the serial number protection key.............................59

6.4. Unpair procedure ..59

7. Unwanted Tracking Detection 60
7.1. Overview...60
7.2. Hardware ..60

7.2.1.Motion detector...60
7.2.2.Sound maker ..60

7.3. Implementation ...60

8. NFC Requirements 62

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

6

8.1. Overview...62
8.2. Hardware ..62
8.3. Implementation ...62

9. Timers and Constants 63
9.1. Overview...63

10. Firmware Update 65
10.1.Overview..65

11. Accessory Categories 66

12. App Integration 68
12.1.Overview..68
12.2.General ..68
12.3.Supported URLs ..68

12.3.1.Setup item...68
12.3.1.1.Supported platform...68
12.3.1.2.Details ..68

12.3.2.Select item..69
12.3.2.1.Supported platform...69
12.3.2.2.Details ..69

12.3.3.Remove item...69
12.3.3.1.Supported platform...69
12.3.3.2.Details ..69

13. Revision History 71

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

7

1. Introduction

NOTICE OF PROPRIETARY PROPERTY: THIS DOCUMENT AND THE INFORMATION
CONTAINED HEREIN IS THE PROPRIETARY PROPERTY OF APPLE INC. THE
POSSESSOR AGREES TO THE FOLLOWING: (I) TO MAINTAIN THIS DOCUMENT IN
CONFIDENCE, (II) NOT TO REPRODUCE OR COPY IT, (III) NOT TO REVEAL OR PUBLISH
IT IN WHOLE OR IN PART, (IV) ALL RIGHTS RESERVED.

ACCESS TO THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS
GOVERNED BY THE TERMS OF THE MFi LICENSE AGREEMENT AND FIND MY
NETWORK SUPPLEMENT. ALL OTHER USE SHALL BE AT APPLE’S SOLE DISCRETION.

1.1. Requirements, recommendations, and permissions
This specification contains statements that are incorporated by reference into legal agreements
between Apple and its Licensees. The use of the words must, must not, required, shall, shall not,
should, should not, recommended, not recommended, may, optional, and deprecated in a statement
have the following meanings:
• Must, shall, or required means the statement is an absolute requirement.
• Must not, shall not, or prohibited means the statement is an absolute prohibition.
• Should or recommended means the full implications must be understood before choosing a different

course.
• Should not or not recommended means the full implications must be understood before choosing

this course.
• May or optional means the statement is truly optional, and its presence or absence cannot be

assumed.
• Deprecated means the statement is provided for historical purposes only and is equivalent to “must

not.”
The absence of requirements, recommendations, or permissions for a specific accessory design in this
specification must not be interpreted as implied approval of that design. Licensee is strongly
encouraged to ask Apple for feedback on accessory designs that are not explicitly mentioned in this
specification. 

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

8

1.2. Terminology
Throughout this document, these terms have specific meanings:
• The term Apple device is used to refer to an iPhone, iPad, iPod touch, Apple Watch, or Mac

(running iOS, iPadOS, watchOS, or macOS).
• The term accessory is used to refer to any product intended to interface with a device through the

means described in this specification.
• The term Apple Account is an authentication method that Apple uses for iPhone, iPad, Mac, and

other Apple devices and services. When an Apple Account is used to log in to an Apple device, the
device will automatically use the settings associated with the Apple Account.

• ⍺ || β denotes concatenation of the values ⍺ and β.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

9

2. Core Concepts

2.1. Overview
The Find My Network Accessory Specification defines how an accessory communicates with Apple
devices to help owners locate their accessories privately and securely by using the Find My network.

2.2. Find My app
The Find My app is where you locate your Apple devices, share your location with friends and family,
and locate Find My network-enabled accessories. The app displays the location of findable items and
includes additional features to protect your devices, such as playing sound and using Lost Mode. See
the Find My webpage for more details.

2.3. Transport
The Find My network accessory protocol uses Bluetooth Low Energy (LE) as the primary transport to
interact with Apple devices.

2.4. Operation
The accessory and the owner Apple device generate a cryptographic key pair after Find My network
pairing. The owner Apple device has access to both the private and the public key, and the accessory
has the public key.
An accessory subsequently broadcasts a rotating key (derived from the public key) as a low energy
Bluetooth beacon. This beacon can be picked up by nearby Apple devices (see Find My network). The
Apple devices publish the key received in the Bluetooth beacon, along with its own location encrypted
using that same key, to Apple servers. Because the private key is stored only on the owner device, the
location information is accessible only to the device owner. The data stored in Apple servers is end-to-
end encrypted, and Apple does not have access to any location information.

2.5. Roles

2.5.1.Owner device

When an accessory is paired with an Apple device through the Find My app, the accessory is
associated with the Apple Account on that device. This device and all other Apple devices signed in with
the same Apple Account are treated as owner devices.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

10

https://www.apple.com/icloud/find-my/

The Find My app on an owner device can be used to locate accessories. An owner device is required
for actions such as unpairing the device, firmware update, locate, and so on.

2.5.2.Accessory

An accessory is the device that implements the Find My network accessory protocol and can be located
using the Apple Find My network and servers. The accessory is paired with the Apple Account in use on
the owner device.

2.5.3.Find My network

The Find My network provides a mechanism to locate accessories by using the vast network of Apple
devices that have Find My enabled. When an accessory is detected by a nearby Apple device, the
device publishes its own encrypted location as the approximate location of the detected accessory.
Reports from more than one Apple device can provide a more precise location. Any Apple device that
participates in the Find My network is called a Finder device. Participation in the Find My network is a
user choice that can be reviewed or changed anytime in Settings.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

11

Figure 2-1: Different roles in the Find My network

A non-owner device refers to a device that may connect to the accessory but is not an owner device.
(For example, a device might connect in response to a UT alert; see Unwanted tracking detection.)

2.5.4.Apple server

Apple server receives encrypted location data from Finder devices and temporarily stores it. Only the
owner devices can decrypt and read raw locations from the encrypted data. Apple cannot read this
information.

2.6. Features

2.6.1.Unwanted tracking detection

Unwanted tracking detection (UT) notifies the user of the presence of an unrecognized accessory that
may be traveling with them over time and allows them to take various actions, including playing a sound
on the accessory if it’s in Bluetooth LE range.

2.6.2.Lost mode

An owner can use the Find My app to place their accessory in Lost Mode. They can set a phone
number and select a message from a predefined list.
When someone finds someone else’s lost accessory, they can discover the details set by the owner by
using NFC or Bluetooth LE to help the owner recover the lost item. See Serial number lookup for
details.

2.6.3.Play sound

The Play sound feature allows users to play sound from their Apple device to locate the accessory. This
action may be initiated from an owner or non-owner device.
Users can play a sound from the Find My app on an owner device. The Apple device creates a
Bluetooth LE connection or uses an existing connection to the accessory and uses the Play sound—
owner control point to initiate the action.
Users can play a sound from a non-owner device when a UT alert appears on that device. That device
creates a Bluetooth LE connection and uses the Play sound—non-owner control point to initiate the
action.

2.7. States
Accessory operations can be described using a state machine with the states listed in this section and
transition between them based on interactions with an owner device.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

12

2.7.1.Unpaired

The accessory must be in an unpaired state on first startup or before the accessory setup is completed.
In this state, the accessory must advertise Find My network service as a primary service in a
connectable Bluetooth advertisement (See Bluetooth LE advertising). The user initiates pairing from an
owner device. See Pairing for the pairing procedure.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

13

Figure 2-2: Accessory state machine

2.7.2.Connected

The accessory must enter connected state after the Find My network pairing successfully completes
with the owner device. The owner device may disconnect from the accessory after pairing completes.
Once paired, the accessory must not pair with another Apple device for Find My network functions. It
must stay paired until it successfully completes the unpairing procedure with the owner device.
The accessory must reenter the connected state from nearby or separated state or whenever an owner
device connects to the accessory. The accessory shall support simultaneous connections to two Apple
devices on the same Apple Account.
Motion detection and Unwanted Tracking protocols are disabled in connected state. When the
accessory enters this state, advertising payload is set to the nearby key. A paired accessory must
disconnect the Bluetooth LE connection if the link encryption is not completed within 10 seconds.

2.7.3.Nearby

The accessory must enter the nearby state immediately after it disconnects from the last owner device.
The accessory shall remain in nearby state for TNEARBY. See Timers and constants.
Motion detection and unwanted tracking detection protocols are disabled in nearby state. When the
accessory enters this state, advertising payload is set to the nearby key. See Payload for nearby state
for details.

2.7.4.Separated

The accessory must enter the separated state under these conditions:
1. The accessory is paired and starts up from a reset, power cycle, or other reinitialization

procedure.
2. The accessory is in nearby state and the TNEARBY time-out has expired.

Motion detection and unwanted tracking detection protocols are enabled in separated state. When the
accessory enters this state, advertising payload is set to the primary key or the secondary key. See
Payload for separated state for details. 

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

14

3. Requirements

3.1. Overview
Accessories that support the Find My network accessory protocol must conform to the requirements
listed in this chapter, along with any feature-specific requirements contained in other chapters.

3.2. General
An accessory that supports the Find My network accessory protocol must meet these requirements:

• It must incorporate software authentication. See Software authentication for details.
• It must enable the user to set up the accessory using the Apple Find My app, both out of the box

and after every factory reset, without requiring additional setup procedures.
• It must be certified and listed as a qualified end product by the Bluetooth SIG.
• It must not be intended, marketed or used to track people or pets.
• It must not be intended, marketed or used to deter theft or recover stolen items.
• It must not be intended, marketed or used for asset tracking or fleet management, including

ridesharing.
• It must not operate simultaneously on the Find My network and other finder network, or otherwise

implement functionality which may interfere with the security and privacy requirements referenced
in this document.

• It must be not be intended, marketed or used for enterprise, business-to-business, government,
education, or other commercial or institutional use.

• It must comply with the latest versions of the applicable Licensed Specifications when the
accessory supports additional MFi licensed technologies.

3.3. Hardware

3.3.1.Bluetooth

The accessory must use a Bluetooth controller that meets the following requirements:
• LE 2M uncoded PHY
• Data packet length extension

For details, refer to the latest version of Bluetooth Core Specification Feature Overview.
The Bluetooth LE transmit power level of the accessory shall be fixed at ≥ +4dBm. The transmit power
level is the conducted transmit power.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

15

An accessory with a higher transmit power is visible to finder devices over a larger area. The accessory
is more likely to be found, and with more frequent location updates. However, the location will be less
certain, so that the owner of a misplaced device will have a larger search area. A lower transmit power
will have the opposite trade-off. A product should choose a Bluetooth LE transmit power that matches
its objective and performance targets.

3.3.1.1.Accessories that advertise non-Find My network Bluetooth payload

Find My network-enabled accessories that advertise a Bluetooth payload in addition to the Bluetooth
payload advertised for the Find My network shall comply with the requirements below.

• Bluetooth Classic accessories shall support GATT over Bluetooth Classic and Bluetooth LE.
• Bluetooth LE accessories shall support

• LE advertising extensions to advertise other services and payload using advertising sets.
• Random resolvable addresses and periodic rotation of the addresses and Bluetooth payload

used in advertising sets, rotating every 15 minutes. This will deter tracking of the accessory by
a non-owner when it is in physical proximity to the owner.

• Accessories that support standard Bluetooth Classic and Bluetooth LE pairing to multiple hosts
shall allow Find My network pairing to only one owner.

• When connected to hosts that are not paired to the Find My network, accessories shall expose
only paired owner information characteristic of the Find My network service.

Examples of such accessories include Bluetooth headphones and speakers, and accessories that
connect to an app.

3.3.1.1.1. Find My device naming

When a Find My network-enabled accessory that advertises a non-Find My network Bluetooth payload
is put in Bluetooth pairing mode by the end user, an updated device name that includes the suffix “-Find
My” shall be presented in Bluetooth settings. This will indicate that location finding is enabled. The de-
vice name is limited to 14 characters total.

This updated device name shall be used in all the name discovery procedures used during pairing and
discovery. This includes: Extended Inquiry Response and Remote Name Request procedures for BT
Classic devices, Local Name AD type in Advertising, Scan_Response payloads, and device name
GATT characteristic for BT LE devices.

When the owner device reconnects to the accessory, the accessory shall revert back to the original de-
vice name.

3.3.2.Product-specific requirements

During separated state, motion-triggered UT sound alerts from the accessory are designed to bring
awareness to the person who is in proximity to it. These alerts are created using a sound maker (such
as a speaker) and a motion detector (such as an accelerometer).
Accessories that would not be easily discovered by the person in proximity to it, must include a sound
maker and motion detector to support motion-triggered UT sound alerts. See Unwanted tracking
detection for detailed requirements.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

16

Certain accessories that meet the following criteria do not need to include a sound maker or motion
detector:

• The Bluetooth module is integrated into the accessory in such a way that it cannot be removed
without rendering the Bluetooth module inoperable, AND

• The accessory is larger than 30 cm in at least one dimension, OR
• The accessory is larger than 18 cm X 13 cm in two of its dimensions, OR
• The accessory is larger than 250 cm3 in three dimensional space

3.3.3. Find My on-product mark

The Locate with Apple Find My icon or the Locate with Apple Find My badge is required on all Find My
network-enabled Licensed Products unless any one of these three criteria are met:

• The Licensed Product always requires Bluetooth pairing before its intended use, and has imple-
mented Find My device naming that indicates it is currently trackable by its owner. For example,
Bluetooth wireless headphones meet this criteria.

• The Licensed Product is a dedicated tracking device which has no purpose other than to be locat-
ed using Apple Find My, and it has a motion detector and sound maker. For example, a locator fob
that includes motion detection and sound, and is designed to attach to other objects would meet
this criteria.

• The Licensed Product is a personal computing device with internet connectivity that is apparent
and obvious to the user. For example, computers, tablets, and digital watches that offer internet
connectivity meet this criteria.  

Refer to the Works with Apple Find My Identity Guidelines for additional requirements for the Locate
with Apple Find My icon and the Locate with Apple Find My badge.

3.3.4.Serial number requirement

The serial number must be etched, engraved or otherwise directly printed on the accessory, and the
end user must be able to easily find it on the accessory. The number must be unique for each product
ID. Accessory serial number can be up to 16 bytes of uppercase alphanumeric characters (A-Z, 0-9). If
the serial number is less than 16 bytes, trailing null padding shall be added.

3.3.5.Serial number lookup

The serial number must be readable either through NFC tap (see additional requirements under NFC)
or Bluetooth LE (see additional requirements under Serial number lookup over Bluetooth LE). For
privacy reasons, a serial number must be readable over Bluetooth LE only when a device is paired and
upon user action on the accessory (for example, when pressing and holding a button). Buttons should
be externally accessible (i.e., not on the circuit board under the battery door). Special tools, like a
screwdriver, paperclip, or SIM-removal tool, must not be required for serial number lookup.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

17

Instructions for serial number lookup from the accessory must be provided in the MFi Portal on the
Product Plan Find My Data Form.

3.3.6.Find My network disable

The accessory must have a physical mechanism to disable Find My network (for example, a power off
button, or battery removal) based on user intent. Special tools, like a screwdriver, paperclip, or SIM-
removal tool, shall not be required to disable Find My network.
Instructions for how to disable the Find My network from the accessory must be provided in the MFi
Portal on the Product Plan Find My Data Form.

3.3.7.Find My network pairing mode

The accessory must have a physical mechanism to put it into Find My network pairing mode (for
example, press a button 3 times) based on user intent. See Pairing mode for additional details.

3.3.8.Reset

The accessory must have a physical mechanism to reset to default factory settings (for example, 5
power cycle attempts within 1 minute) based on user intent. A factory reset must delete all Find My
network data except the following:

• Accessory non-owner service
• Firmware version
• Serial number
• Software authentication token
• Software authentication UUID
• Apple server public keys

- Signature verification key (Q_A)
- Encryption key (Q_E)

The accessory must reenter Find my network pairing mode when the user initiates it. See Pairing for
details.

3.3.9.Clock accuracy

The accessory must support 15-minute key rotation using hardware timers. Apple devices expect the
accessory to have a 200 PPM oscillator, causing a potential drift rate of 17.28 seconds per day. See
Timers and constants for more details. On every connection, the owner device sends the Configure
separated state command. The accessory shall synchronize its clock using the NextPrimaryKeyRoll
parameter of the Configure_Separated_Mode command.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

18

3.4. Cryptography

3.4.1.Operations

Pairing the accessory with an owner device as well as deriving keys requires the following:
• A cryptographically secure DRBG (see NIST Special Publication 800-90A) with a reliable source

of entropy (see NIST Special Publication 800-90B).
• Modular reduction and addition of big integers.
• An implementation of the SHA-256 cryptographic hash function.
• An implementation of the ANSI x9.63 KDF (see SEC1, 3.6.1 ANSI X9.63 Key Derivation

Function).
• Computations on the NIST P-224 elliptic curve (see NIST SP 800-186, 3.2.1.2. P-224):

- Generation of a random scalar in [1, q).
- Scalar multiplication and point addition.
- Verification that a point is on the P-224 elliptic curve.

• ECDSA/ECDH over the NIST P-256 elliptic curve (see NIST SP 800-186, 3.2.1.3. P-256 and
Pairing for more details).

• AES-128-GCM encryption and decryption (see NIST Special Publication 800-38D).

3.4.2. Implementation

Cryptographic operations and algorithms must compute on secret values in constant time to defend
against timing attacks. Similarly, a secret value (or parts of one) must not be used as a memory offset
or as the condition for a branch instruction.
Scalar generation should either use rejection sampling or generate at least 64 more bits than needed
so that the bias due to the modular reduction is negligible (see FIPS 186-5, A.2.1 ECDSA Key Pair
Generation using Extra Random Bits and A.2.2 ECDSA Key Pair Generation by Rejection Sampling).
The scalar must not be generated by simply reducing the minimally required number of random bytes
modulo q (the order of the base point) because this leads to a biased distribution.
Implementation of the scalar multiplication and point addition on elliptic curves must be safe against
timing attacks. An exception may be made when computing on public values; for example, to speed up
ECDSA signature verification. A variable-time, double-base scalar multiplication for ECDSA signature
verification must not be used to compute primary or secondary keys.
Upon receiving a scalar, it must be checked to be in range [1, q), where q is the order of the base point
of the elliptic curve, before continuing with the protocol flow. See Scalar validation.
Upon receiving an elliptic curve point, it must be checked to be on the curve. See Elliptic curve point
validation.

3.4.2.1. Endianness and wire format

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

19

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

All elliptic curve points, coordinates, and scalars must be transmitted in big-endian byte order; that is,
the most significant bytes are sent first.
Whenever a scalar or a coordinate is the input for an algorithm like SHA-256() or ANSI-X9.63-KDF(), or
the output of a function, its byte order is assumed to be big-endian. A point is expected to be formatted
in uncompressed ANSI X9.63 format. See SEC1, 2.3.3 EllipticCurvePoint-to-OctetString Conversion.

3.4.2.2. Random scalar generation

Whenever this specification requires generation of a P-224 scalar, follow this process:
1. Generate r = 28 random bytes using a cryptographically secure DRBG. See Operations.
2. If r >= q - 1, where q is the order of the base point of the P-224 elliptic curve, go to step 1.
3. Compute s = r + 1 and return s as the new scalar.

Another option to securely generate a P-224 scalar is as follows:
1. Generate r = 36 random bytes using a cryptographically secure DRBG. See Operations.
2. Compute k = r (mod q-1), where q is the order of the base point of the P-224 elliptic curve.
3. Compute s = k + 1 and return s as the new scalar.

Whenever this specification requires generation of a P-256 scalar, follow this process:
1. Generate r = 32 random bytes using a cryptographically secure DRBG. See Operations.
2. If r >= q - 1, where q is the order of the base point of the P-256 elliptic curve, go to step 1.
3. Compute s = r + 1 and return s as the new scalar.

Another option to securely generate a P-256 scalar is as follows:
1. Generate r = 40 random bytes using a cryptographically secure DRBG. See Operations.
2. Compute k = r (mod q-1), where q is the order of the base point of the P-256 elliptic curve.
3. Compute s = k + 1 and return s as the new scalar.

3.4.2.3. Scalar validation

Whenever this specification requires validation of a P-224 scalar, follow this process:
1. If the given scalar s = 0, reject it as invalid.
2. If s >= q, where q is the order of the base point of the P-224 elliptic curve, reject s as invalid.
3. Make s a valid scalar.

3.4.2.4. Elliptic curve point validation

Whenever this specification requires validation of a P-224 elliptic curve point, follow this process:
1. Check that the length of a point is 57 bytes.
2. Decode x and y as big-endian integers in the range [0, 2224).
3. Check that x < p and y < p, where p = 2224 - 296 + 1.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

20

https://www.secg.org/SEC1-Ver-1.0.pdf

4. Check that y2 = x3 + ax + b, where a = p - 3 and b =
0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4.

3.4.2.5. ECDSA signature verification

Whenever this specification requires verification of a P-256 ECDSA signature over a message m:
1. Decode the given signature to obtain two 32-byte big-endian integers r and s (see SEC1, C.5

Syntax for Signatures).
2. Check that 0 < r < p and 0 < s < p, where p = 2256 - 2224 + 2192 + 296 - 1.

3. Compute e = SHA-256(m), where m is the signed message.
4. Let z be the |q| leftmost bits of e, where |q| is the bit length of the group order q.
5. Compute u1 = zs-1 (mod q) and u2 = rs-1 (mod q).
6. Compute the point (x, y) = u1 ⋅ G + u2 ⋅ QA, where G is the base point of the P-256 elliptic curve

and QA is Apple’s signature verification key.
7. If (x, y) is the point at infinity, reject the signature.
8. If r = x (mod q), then accept the signature, and if not, reject it.

See Apple server public keys for signature verification key (QA) details.

3.4.2.6. ECIES encryption

Whenever this specification requires encryption of a message M to a P-256 public key P=QE (Apple
server encryption key), follow this process:

1. Generate an ephemeral P-256 scalar k as described in Random scalar generation.

2. Compute the public point Q = k ⋅ G, where G is the base point of the P-256 elliptic curve.

3. Compute the shared secret Z = k ⋅ P.

4. Derive 32 bytes of keying material as V = ANSI-X9.63-KDF(x(Z), Q || P).
5. Set K = V[0..15], that is, the first 16 bytes of the keying material V.
6. Set IV = V[16..31], that is, the last 16 bytes of the keying material V.
7. Encrypt message M as (C,T) = AES-128-GCM(K, IV, M) without any additional authenticated

data. K is the 128-bit AES key, IV is the initialization vector, C is the ciphertext, and T is the 16-
byte authentication tag.

8. Output Q || C || T; that is, the ephemeral public key Q concatenated with the ciphertext and the
authentication tag.

See Apple server public keys for the Apple server’s encryption key (QE) details.

3.4.2.7. AES-GCM decryption

Whenever this specification requires AES-128-GCM decryption of a message M, given a 128-bit AES
key K and a 16-byte IV, follow this process:

1. Decode message C in the following way: With n = length(C), take the first n - 16 bytes as the
cipher text C. The last 16 bytes are the authentication tag T.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

21

https://www.secg.org/SEC1-Ver-1.0.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf

2. Decrypt ciphertext C as (M,T’) = AES-128-GCM(K, IV, C) without any additional authenticated
data.

3. Compare authentication tags T and T’. Do not abort as soon as a mismatch is found, but report
an error only after all bytes have been compared.

4. If T ≠ T’, abort and discard the ciphertext.

3.4.2.8. Random generation

Whenever this specification requires generation random values, a cryptographically secure DRBG must
be used.

3.5. Software authentication
Refer to the Software Authentication Server Specification on how to obtain software tokens.

• A software authentication token, along with its corresponding UUID, must be provisioned on the
accessory through factory provisioning (at the time of accessory manufacturing and firmware
flashing).

• The software authentication token and its UUID must be decoded using Base64 from the file
provided by Apple’s server and stored as raw data bytes on the accessory.

• The UUID associated with the software authentication token must be registered with Apple server
as defined in the Software Authentication Server Specification after provisioning on the accessory.

• The software authentication token must be stored in secure storage on the accessory.
• The provisioned software authentication token must persist through factory reset.
• The provisioned software authentication token is for one-time use only. The software

authentication token and corresponding UUID will be required during pairing as part of the Find My
network pairing process. A new software authentication token will be provided to the accessory
during pairing and must be stored by the accessory for future use. See Pairing and key
management for more details.

3.6. Apple server public keys
Whenever this specification requires Apple server signature verification, the accessory must use the
Apple server signature verification key (Q_A).
Whenever this specification requires encryption to Apple server, the accessory must use the Apple
server encryption key (Q_E).

• Apple server public keys must be provisioned in the accessory through factory provisioning (at the
time of accessory manufacturing and firmware flashing) with integrity protection.

• Apple server public keys must be stored in secure storage on the accessory and protected against
tampering.

MFi Licensees will have access to Apple server public keys.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

22

3.7. Power cycle
A user may power cycle an accessory for various reasons (for example, battery replacement or user
restart). When an accessory is power cycled, it shall start in separated state with the current secondary
key as the separated key. See After power cycle for advertisement details.

3.8. Firmware updates
Accessories must support firmware updates. See Firmware update for more details.

• All firmware images must be authenticated and verified by the accessory using a mechanism that
guarantees the integrity of the image from the manufacturer.

• Updated firmware must complete MFi certification requirements before release.
• Accessories must not allow a firmware image to be downgraded after a successful firmware

update.  

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

23

4. Bluetooth Requirements

4.1. Overview
Bluetooth Low Energy (LE) is used as the wireless transport for all communication between Apple
products and accessories.

4.2. Bluetooth advertising
The accessory should advertise the Find My network payload at the TFMN_ADV_INTERVAL interval in a con-
nectable advertising ADV_IND PDU to match the Bluetooth LE scan duty cycles of the Apple device.
The accessory may advertise other Advertising Data Type (AD Type) in other advertising events. The
accessory shall continue advertising the Find My network payload until all owner devices are connect-
ed, up the maximum number of connections. See Set max connections for details.

4.3. Bluetooth connection
The accessory must support at least two simultaneous connections in a peripheral role.
The connection interval of the Bluetooth LE link between the Apple device and accessory depends on
the type of user interaction. An Apple device typically selects a connection interval in multiples of 15 ms.
The accessory shall support a connection interval that is a multiple of 15 ms. The Apple device may use
990 ms as the Bluetooth LE connection interval to the accessory.

4.4. Bluetooth host

4.4.1. Services

The Find My network service and Accessory non-owner service must be instantiated as primary
services. The accessory must also support the following services:

• Tx Power service
The accessory must set the Tx power Level characteristic to the Bluetooth LE TRP (Total radiated
power). See discussion on Bluetooth LE transmit power for details.

4.4.2. MTU size

The accessory shall select a MTU size that is equal to or greater than the MTU request from the Apple
device.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

24

4.4.3. Link encryption key

The accessory pairs to the Apple device using the Bluetooth LE Just Works pairing scheme. Once
Bluetooth LE paired, the Apple device initiates the Find My network pairing procedure. See Pairing for
more details. To encrypt the Bluetooth LE link on every subsequent connection, the accessory must use
the LTK generated by the Find My network protocol. See LTK generation for details on LTK generation
and use.

4.4.4. Handling concurrent operations

An app on the Apple device may interact with the accessory over GATT or, if supported, connection-
oriented L2CAP channels. Apple devices may connect and perform Find My network GATT operations
independently from other interactions with the accessory.
The accessory shall support Find My network GATT interactions while simultaneously supporting GATT
and connection-oriented L2CAP channels from other Apple devices.

4.4.5.Time-out

Unless otherwise specified, the accessory must respond to all control point commands within 30
seconds.

4.4.6.Indications

Unless otherwise specified, the accessory shall send indications only to requesting connection.

4.5. Accessory non-owner service

4.5.1.Service

The Accessory non-owner service UUID is 15190001-12F4-C226-88ED-2AC5579F2A85. This service
shall use GATT over LE and, if available, Bluetooth Classic transport. The accessory non-owner service
shall be instantiated as a primary service.

The values of the following accessory non-owner service - characteristics must be persistent through
the lifetime of the accessory, Product data, Manufacturer name, Model name, Accessory category, Ac-
cessory capability, and Battery type. These values must match with the data as specified in the MFi
Portal at the time of firmware submission for self‐certification. Note: Some of these values may be visi-
ble to the user in the accessory settings of the Apple Find My app.

4.5.2.Byte transmission order

All characteristics used with this service shall be transmitted with the least significant octet first (that is,
little endian).

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

25

4.5.3.Characteristics

The UUID for Accessory non-owner service characteristics is 8E0C0001-1D68-FB92-
BF61-48377421680E.

Table 4-1 Accessory non-owner service - characteristics

Opcode Opcode
Value Operands

GATT
subproce-

dure
Direction Requirement

ProductData 0x0003 None Write To accessory Mandatory

ProductDataResponse 0x0803 Product
data Indications From accessory Mandatory

ManufacturerName 0x0004 None Write To accessory Mandatory

ManufacturerNameRe-
sponse 0x0804 Manufac-

turer name Indications From accessory Mandatory

ModelName 0x0005 None Write To accessory Mandatory

ModelNameResponse 0x0805 Model
Name Indications From accessory Mandatory

AccessoryCategory 0x0006 None Write To accessory Mandatory

AccessoryCategoryRe-
sponse 0x0806 Accessory

Category Indications From accessory Mandatory

ProtocolImplementa-
tionVersion 0x0007 None Write To accessory Mandatory

ProtocolImplementa-
tionVersionResponse 0x0807

Protocol
Implemen-
tation Ver-
sion

Indications From accessory Mandatory

AccessoryCapabilities 0x0008 None Write To accessory Mandatory

AccessoryCapabilities-
Response 0x0808

Accessory
Capabili-
ties

Indications From accessory Mandatory

NetworkID 0x0009 None Write To accessory Mandatory

NetworkIDResponse 0x0809 Network ID Indications From accessory Mandatory

FirmwareVersion 0x000A None Write To accessory Mandatory

FirmwareVersionRe-
sponse 0x080A Firmware

Version Indications From accessory Mandatory

Opcode

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

26

4.5.3.1. Product data

The ProductData operand represents the 8 byte product data value assigned to each Product Plan in
the MFi Portal upon Product Plan submission.

Product data received from MFi Portal is a 16 character string. It is composed of two 8 character hex
strings (lowercase zero padded), each of which will give you 4 bytes. That makes the total 8 bytes to be
sent as Product data.

For e.g. the Product data value of dfeceff1e1ff54db, the value converted to binary would be

dfeceff1 11011111 11101100 11101111 11110001

e1ff54db 11100001 11111111 01010100 11011011

BatteryType 0x000B None Write To accessory Mandatory

BatteryTypeResponse 0x080B Battery
Type Indications From accessory Mandatory

BatteryLevel 0x000C None Write To accessory Optional

BatteryLevelResponse 0x080C Battery
Level Indications From accessory Optional

FindMyVersion 0x000D None Write To accessory Mandatory

FindMyVersionRe-
sponse 0x080D Find My

Version Indications From accessory Mandatory

Opcode
Value Operands

GATT
subproce-

dure
Direction RequirementOpcode

Table 4-2 Product Data

Operand name Data type Size (octets) Description

Product Data Uint8 8 ProductData

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

27

4.5.3.2. Manufacturer name

The manufacturer name operand contains the name of the company whose brand will appear on the
accessory, e.g., ”Acme”.

When the Manufacturer Name is less than 64 bytes, it SHALL be formatted either as:

• A string value with length less than 64 bytes.

• A string value that is both zero-terminated and zero-padded up to 64 bytes.

4.5.3.3. Model name

The model name operand contains the manufacturer specific model of the accessory.

When the Model Name is less than 64 bytes, it SHALL be formatted either as:

• A string value with length less than 64 bytes.

• A string value that is both zero-terminated and zero-padded up to 64 bytes.

4.5.3.4.Accessory category

The accessory category operand describes the category the accessory most closely resembles.

4.5.3.5.Protocol Implementation Version

Table 4-3 Manufacturer name

Operand name Data type Size (octets) Description

Manufacturer name UTF-8 64 Manufacturer name

Table 4-4 Model Name

Operand name Data type Size (octets) Description

Model Name UTF-8 64 Model name

Table 4-5 Accessory category

Operand name Data type Size (octets) Description

Accessory category Uint8 8
See Accessory Category for details

Byte 0: Uint8 value of Accessory Category

Byte 1-7: Reserved

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

28

The Protocol Implementation version operand describes the current implementation version of the pro-
tocol.

4.5.3.6.Accessory capabilities

The accessory capabilities operand describes the various Find My network protocol capabilities sup-
ported on the accessory.

For e.g. an accessory supporting playSound, NFC, UT and firmware update service will have the value
set as:

00000000 00000000 00000000 00010111 in binary

0x00000017 as Hex

23 as UInt32

4.5.3.7.Firmware version

The Firmware version operand describes the current firmware version on the product.

The firmware revision string shall use the x[.y[.z]] format where :
• <x> is the major version number, required.

Table 4-6 Protocol Implementation Version

Operand name Data type Size (octets) Description

ProtocolImple-
mentationVer-
sion

Uint32 4

Byte 0 : revision version number
Byte 1 : minor version number
Byte 2:3 : major version number

This must be set to 1.0.0 for this version of
the specification. The equivalent 4-byte val-
ue is 0x00010000

Table 4-7 Accessory capability

Operand name Data type Size (octets) Description

Accessory capabilities Uint32 4

Bit 0 : Supports play sound

Bit 1 : Supports motion detector UT

Bit 2 : Supports serial number lookup by NFC

Bit 3 : Supports serial number lookup by BLE

Bit 4: Supports firmware update service

Bits 5-31: Reserved

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

29

• <y> is the minor version number, required if it is non zero or if <z> is present.
• <z> is the revision version number, required if non zero.
The firmware revision must follow these rules:
• <x> is incremented when there is significant change; for example, 1.0.0, 2.0.0, 3.0.0, and so on.
• <y> is incremented when minor changes are introduced, such as 1.1.0, 2.1.0, 3.1.0, and so on.
• <z> is incremented when bug fixes are introduced, such as 1.0.1, 2.0.1, 3.0.1, and so on.
• Subsequent firmware updates can have a lower <y> version only if <x> is incremented.
• Subsequent firmware updates can have a lower <z> version only if <x> or <y> is incremented.
• Major version must not be greater than (2^16 -1).
• Minor and revision version must not be greater than (2^8 -1).

• The characteristic value must change after every firmware update.

As an example, a Major.Minor.Revision value of 1.0.0 has an equivalent 4-byte value of 0x00010000.

4.5.3.8.Find My network version

The Find My network version operand indicates the Find My network specification version the product
complies with. The version format matches the firmware version format described in the previous sec-
tion.

4.5.3.9.Battery type

The Battery type operand describes the battery type used in the accessory.

Table 4-8 Firmware version

Operand name Data type Size (octets) Description

FirmwareVersion Uint32 4
Byte 0 : revision version number
Byte 1 : minor version number
Byte 2:3 : major version number

Table 4-9 Find My network version

Operand name Data type Size (octets) Description

Find My network
version Uint32 4

Byte 0 : revision version number
Byte 1 : minor version number
Byte 2:3 : major version number

This must be set to 2.0.0 for this version of
the specification. The equivalent 4-byte val-
ue is 0x00020000

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

30

4.5.3.10.Battery level

The Battery level operand indicates the current battery level.

4.5.3.11.Network ID

The 1-byte Network ID operand indicates a registered value for the manufacturer, as defined in Manu-
facturer Registry.

4.5.3.12. Non-owner control point

The non-owner control point enables a non-owner device to locate the accessory by playing a sound.
The non-owner control point shall use the same service and characteristic as defined in 4.5.1
Accessory non-owner service. The opcodes for the control point are defined in Table 4-13.

Table 4-10 Battery type

Operand name Data type Size (octets) Description

Battery Type Uint8 1
0 = Powered

1 = Non-rechargeable battery

2 = Rechargeable battery

Table 4-11 Battery state

Operand name Data type Size (octets) Description

Battery Level Uint8 1

Battery state definition
0 = Full
1 = Medium
2 = Low
3 = Critically low

Table 4-12 Manufacturer registry

Operand Name Data type Size (octets) Description

Network ID Uint8 1 This must be set to 0x01 for accessories
operating on the Find My network.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

31

This control point shall be available to the non-owner device only when the accessory is in separated
state. In all other states, the accessory shall return the Invalid_command error as the responseStatus in
CommandResponse. See Command Response for details.

4.5.3.13.Non-owner control point procedures

The accessory, as server, shall indicate the non-owner control point for responding to the commands
from the non-owner device.

4.5.3.13.1. Play sound—Non-owner control point

Play sound requirements are applicable only to accessories that include a sound maker. See Product-
specific requirements.
The Sound_Start opcode is used to play sound on the sound maker of the accessory. The sound maker
must play sound for a minimum duration of 5 seconds.
The accessory shall confirm the start of the play sound procedure by sending a Command_Response
with the corresponding CommandOpCode and a ResponseStatus value of Success.
Once the play sound action is completed, the accessory sends the Sound_Completed message.
The Sound_Stop opcode is used to stop an ongoing sound request.
If the sound event is completed or was not initiated by the non-owner device, the accessory responds
with the Invalid_state ResponseStatus code.
If the accessory does not support the play sound procedure, it responds with Invalid_command
ResponseStatus code.
If a Sound_Start procedure is initiated when another play sound action is in progress, it rejects with
Invalid_state error code.

Table 4-13 Non-owner control point

Opcode Opcode
value Operands GATT

subprocedure Direction

Sound_Start 0x0300 None Write To accessory

Sound_Stop 0x0301 None Write To accessory

Command Response 0x0302 CommandOpCode
ResponseStatus Indications From accessory

Sound_Completed 0x0303 None Indications From accessory

Get_Serial_Number 0x0404 None Write To accessory

Get_Serial_Number_Re-
sponse 0x0405 SerialNumberPayload Indications From accessory

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

32

The accessory shall confirm the completion of the stop sound procedure by sending the
Sound_Completed message.

4.5.3.13.2.Get Serial Number

The Get_Serial_Number is used to retrieve serial number lookup payload over Bluetooth LE. This must
be enabled for TFMN_SEPARATED_SN_LOOKUP_INTERVAL duration upon user action on the accessory (for
example, press and hold a button for 10 seconds to initiate serial number read state). When the
accessory is in this mode, it must respond with Get_Serial_Number_Response.

If the accessory is not in serial number read state, it must send Command Response with a status of
Invalid_state.

4.6. Find My network service

4.6.1.Service

The Find My network service UUID is 0xFD44. This service shall use GATT over LE and, if available,
Bluetooth Classic transport.

4.6.2.Byte transmission order

All characteristics used with this service shall be transmitted with the least significant octet first (that is,
little endian).

4.6.3.Characteristics

The UUID for Find My network service characteristics is 4F86XXXX-943B-49EF-BED4-2F730304427A,
where XXXX is unique for each characteristic.

Table 4-14 Get Serial Number Response

Operand Data type Size
(octets) Description

SerialNumber-
Palyload bytes 141 Encrypted serial number (e) when in paired state.

See Serial number payload information for details.

Table 4-15 Find My network service - characteristics

Characteristic name UUID Requirement Mandatory properties Security permissions

Pairing
Control Point 0x0001 Mandatory Write,

Indicate
Authorization
not Required

Characteristic name

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

33

A client characteristic configuration descriptor shall be included for all the characteristics, as required.

4.6.3.1.Pairing control point

The pairing control point enables you to pair an accessory with an owner device. The opcodes for the
control point is defined in Table 4-16.

4.6.3.2. Pairing control point procedures

The accessory, as server, shall indicate the pairing control point for responding to the commands from
the Apple device.

Configuration
Control Point 0x0002 Mandatory Write,

Indicate
Authorization
required

Reserved 0x0003 N/A N/A N/A

Paired owner Informa-
tion Control Point 0x0004 Mandatory Write,

Indicate
Authorization
not required

Debug
Control Point 0x0005 Mandatory Write,

Indicate
Authorization
not required

UUID Requirement Mandatory properties Security permissions Characteristic name

Table 4-16 Pairing control point opcodes

Opcode Opcode
value Operands GATT

subprocedure Direction

Initiate_pairing 0x0100 SessionNonce
E1 Write To accessory

Send_pairing_data 0x0101 C1
E2 Indications From accessory

Finalize_pairing 0x0102

C2
E3
SeedS
S2
iCloudIdentifier

Write To accessory

Send_pairing_status 0x0103
C3
Status
E4

Indications From accessory

Pairing_complete 0x0104 NextPrimaryKeyRoll Write To accessory

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

34

4.6.3.2.1.Initiate pairing

The Initiate_pairing opcode is used to start the pairing session of an accessory from an Apple device.

4.6.3.2.2.Send pairing data

The Send_pairing_data opcode must be used by the accessory to respond to a pairing session request.
The accessory must respond in 60 seconds.

See Send pairing data for E2 generation details.

4.6.3.2.3.Finalize pairing

The Finalize_pairing opcode is used by an Apple device to confirm pairing. See Validate and confirm
pairing for more details.

Table 4-17 Initiate pairing

Operand Data type Size (octets) Description

SessionNonce bytes 32 Nonce generated by owner device

E1 bytes 113 Encrypted blob generated by owner device

Table 4-18 Send pairing data

Operand Data type Size (octets) Description

C1 bytes 32
Data sent by the accessory as initial com-
mitment for pairing (see Collaborative key
generation for C1 details)

E2 bytes 1326 Encrypted blob generated by accessory

Table 4-19 Finalize pairing

Operand Data type Size
(octets) Description

C2 bytes 114 Shared commitment generated by Apple device

E3 bytes 1040 Encrypted software token that’s vended by Apple
server for each accessory

Operand

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

35

4.6.3.2.4.Send pairing status

The Send_pairing_status opcode must be used by the accessory to confirm pairing.

See Send pairing status for E4 generation details.

4.6.3.2.5.Pairing complete

The Pairing_complete opcode is used to complete pairing the accessory from the Apple device. The
valid range for nextPrimaryKeyRoll parameter is 0 to 15 minutes.

SeedS bytes 32 Unique server seed for each accessory that’s
paired

iCloud_Identifier bytes 60 masked Apple Account

S2 bytes 100 Apple server signature to confirm pairing

Data type Size
(octets) DescriptionOperand

Table 4-20 Send pairing status

Operand Data type Size  
(octets) Description

C3 bytes 85 Final commitment generated by accessory. See Col-
laborative key generation for C3 details.

Status UInt32 4
0 - for success
1 - error signature verification
2 - error saving data

E4 bytes 1286 Encrypted blob generated by accessory

Table 4-21 Pairing complete

Operand Data type Size  
(octets) Description

NextPrimaryKey-
Roll UInt32 4 Time in milliseconds until the next primary key rota-

tion

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

36

4.6.3.3. Configuration control point

The configuration control point enables you to configure Find My network functionality on the accessory
and enable Find My network interactions. The opcodes for the control point are defined in Table 4-22.

Table 4-22 Configuration control point opcodes

Opcode Opcode
Value Operands GATT

subprocedure Direction

Sound_Start 0x0200 None Write To accessory

Sound_Stop 0x0201 None Write To accessory

Persistent_
Connection_Status 0x0202 Persistent Connection-

Status Write To accessory

Set_Nearby_Timeout 0x0203 NearbyTimeOut Write To accessory

Unpair 0x0204 None Write To accessory

Configure_Separated_S-
tate 0x0205

NextKeyRoll
SecondaryKeyEvalua-
tionIndex

Write To accessory

Latch_Separated_Key 0x0206 None Write To accessory

Set_Max_Connections 0x0207 MaxConnections Write To accessory

Set_UTC 0x0208 CurrentTime Write To accessory

Get_Multi_Status 0x0209 None Write To accessory

Keyroll_Indication 0x020A KeyIndex Indications From accessory

Command_Response 0x020B CommandOpCode
ResponseStatus Indications From accessory

Get_Multi_Status_Re-
sponse 0x020C MultiStatus Indications From accessory

Sound_Completed 0x020D None Indications From accessory

Latch_Separat-
ed_Key_Response 0x020E LatchedPrimaryKeyIn-

dex Indications From accessory

Get_Firmware_Version 0x0229 None Write To accessory

Get_Firmware_Ver-
sion_Response 0x022A Firmware Version Indications From accessory

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

37

4.6.3.4.Configuration control point procedures

The paired Apple device initiates a configuration procedure using one of the messages defined in Table
4-22. The accessory, as server, shall indicate the Configuration control point for responding to the
commands from the Apple device.

4.6.3.4.1.Play sound—owner control point

Play sound requirements are applicable only for accessories that include a sound maker. See Product-
specific requirements.
The Sound_Start opcode is used to play sound on the sound maker of the accessory.
The accessory shall confirm the start of the play sound procedure by sending a Command_Response
with the corresponding CommandOpCode and a ResponseStatus value of Success.
Once the play sound action is completed, the accessory sends the Sound_Completed message.
The Sound_Stop opcode is used to stop an ongoing sound request.
If the sound event is completed or was not initiated by the Apple device, the accessory responds with
Invalid_state ResponseStatus code.
If the accessory does not support the play sound procedure, it responds with Invalid_command
ResponseStatus code.
If a Sound_Start procedure is initiated when another play sound action is in progress, it rejects with
Invalid_state error code.
The accessory shall confirm the completion of the stop sound procedure by sending the
Sound_Completed message.

4.6.3.4.2.Persistent connection status

The Persistent_Connection_Status opcode is used by the owner device to indicate whether the
accessory is persistently connected using an always-connected Bluetooth LE link.
If persistent connection is enabled, on a link lost event, the accessory shall advertise using an
advertising interval of TRECONNECT_ADV_INTERVAL for a duration of TRECONNECT_ATTEMPT_TIMEOUT.

The accessory shall confirm the completion of the procedure by sending a Command_Response with
the corresponding CommandOpCode and a ResponseStatus value of Success.

4.6.3.4.3.Set nearby timeout

Table 4-23 Persistent connection status

Operand Data type Size (octets) Description

Persistent_
Connection_Status Boolean 1 0: Persistent connection disabled

1: Persistent connection enabled

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

38

The Set_Nearby_Timeout opcode is used by the owner device to set the time duration to transition from
nearby state to separated state, TNEARBY. The valid range for the NearbyTimeOut parameter is 0 to 3600
seconds. A NearbyTimeOut of 0 seconds indicates an immediate transition to separated state.

The accessory shall confirm the completion of the procedure by sending a Command_Response with
the corresponding CommandOpCode and a ResponseStatus value of Success.

4.6.3.4.4. Unpair

The Unpair opcode is used to unpair the accessory from the Apple device. This opcode has no
parameters. If the accessory is connected to more than one Central device, the accessory shall reject
the unpair procedure by sending a Command_Response with the corresponding CommandOpCode
and a ResponseStatus value of Invalid state. See Unpair procedure for details. The accessory shall
confirm the completion of the procedure by sending a Command_Response with the corresponding
CommandOpCode and a ResponseStatus value of Success.

4.6.3.4.5. Configure separated state

The Configure_Separated_State opcode is sent on every connection. The valid range for
nextPrimaryKeyRoll parameter is 0 to 15 minutes.
The valid range for secondaryKeyEvaluationIndex parameter is CurrentPrimaryKeyIndex - 4 to
currentPrimaryKeyIndex + 96. The accessory shall confirm the completion of the procedure by sending
a Command_Response with the corresponding CommandOpCode and a ResponseStatus value of
Success.

4.6.3.4.6.Latch separated key

The Latch_Separated_Key opCode instructs the accessory to use the current primary key as
Separated key until the next 4 a.m. local time. This message has no parameters. The accessory shall
confirm the completion of the procedure by sending a Latch_Separated_Key_Response with the
latched Primary Key index.

Table 4-24 Set NearbyTimeOut

Operand Data type Size (octets) Description

NearbyTimeOut Uint16 2 TimeOut in seconds

Table 4-25 Configure separated state

Operand Data type Size
(octets) Description

NextPrimaryKeyRoll Uint32 4 Time in milliseconds until the next primary
key rotation

SecondaryKeyEvaluation-
Index Uint32 4

Primary key index at which secondary key
is re-evaluated. This corresponds to 4
a.m. local time.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

39

4.6.3.4.7.Set max connections

The Set_Max_Connections opcode is used to set the maximum number of Bluetooth connections that
must be supported by the accessory. Accessories shall support at least two simultaneous Bluetooth
connections. If MaxConnections parameter is greater than the accessory’s connection limit, the
accessory shall set the maxConnections to its maximum supported connections limit. If
MaxConnections is set to 1, the accessory shall disconnect all the other connections. The accessory
shall confirm the completion of the procedure by sending a Command_Response with the
corresponding CommandOpCode and a ResponseStatus value of Success.

4.6.3.4.8.Set UTC

The Set_UTC opcode is used to set the current UTC time on the accessory. The accessory shall
confirm the completion of the procedure by sending a Command_Response with the corresponding
CommandOpCode and a ResponseStatus value of Success.

4.6.3.4.9.Keyroll indication

The Keyroll_Indication opcode must be used by the accessory to indicate that a primary key roll has
occurred. The accessory shall send this indication to all the connected Find My network paired
devices.

Table 4-26 Latch Separated Key Response

Operand Data type Size
(octets) Description

LatchedPrimaryKeyIndex Uint32 4 Latched primary key index

Table 4-27 Set max connections

Operand Data type Size (octets) Description

MaxConnections Uint8 1 Maximum Bluetooth connections to be supported by
accessory

Table 4-28 Set UTC

Operand Data type Size (octets) Description

CurrentTime Uint64 8 Current UTC time in ms (Jan 1 2001 Epoch)

Table 4-29 Keyroll indication

Operand Data type Size (octets) Description

KeyIndex Uint32 4 Current primary key index

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

40

4.6.3.4.10.Command response

The CommandOpCode indicates the procedure that the accessory is responding to, and
ResponseStatus indicates the status of the response.

4.6.3.4.11.Get multi status response

The Get_Multi_Status_Response opcode must be used by the accessory to respond to the
Get_Multi_Status command from the Apple device. The multiStatus is a bit mask that indicates the
current state of the accessory. Setting a bit in MultiStatus indicates that the accessory is in that state.

4.6.3.5. Paired owner information control point

The pairing status control point enables an Apple device to read the Find My network pairing status of
the accessory.

Table 4-30 Command response

Operand Data type Size (octets) Description

CommandOpCode Uint16 2 The control procedure matching this response

ResponseStatus Uint16 2

0x0000 Success
0x0001 Invalid_state
0x0002 Invalid_configuration
0x0003 Invalid_length
0x0004 Invalid_param
0xFFFF Invalid_command

Table 4-31 Multistatus

Operand Data type Size
(octets) Description

MultiStatus Uint32 4

 Bit0: Multi_Status_Persistent_Connection
 Bit1: Reserved
 Bit2: Multi_Status_Playing_Sound
 Bit3: Multi_Status_Updating_Firmware
 Bit4: Reserved
 Bit5: Reserved
 Bit6: Multi_Status_Multiple_Owners_Currently_Con-
nected
 Bit7-31: Reserved

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

41

Table 4-32 Paired owner information control point

Opcode Opcode
value Operands

GATT
subproce-

dure
Direction

Get_Current_Primary_Key 0x0400 None Write To accessory

Get_iCloud_Identifier 0x0401 None Write To accessory

Get_Current_Primary_Key_Re-
sponse 0x0402 Current_Primary_key Indications From accessory

Get_iCloud_Identifier_Response 0x0403 iCloud_Identifier Indications From accessory

Reserved 0x0404 N/A N/A N/A

Reserved 0x0405 N/A N/A N/A

Command_Response 0x0406 CommandOpCode
ResponseStatus Indications From accessory

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

42

4.6.3.6.Paired owner information control point procedures

4.6.3.6.1.Get Current Primary Key

The Get_Current_Primary_Key is used to retrieve the currently used Primary Key. If the Find My
network pairing is not complete, the accessory shall respond with
Get_Current_Primary_Key_Response with Current_Primary_Key set to zero. If the Find My network
pairing is complete, the accessory shall respond with Get_Current_Primary_Key_Response with
Current Primary Key.

4.6.3.6.2.Get iCloud Identifier

The Get_iCloud_Identifier is used to retrieve the iCloud identifier associated with Find My network
pairing. If the Find My network pairing is not complete, the accessory shall respond with
Get_iCloud_Identifier_Response with iCloud_Identifier set to zero (all 60 bytes). If the Find My network
pairing is complete, the accessory shall respond with Get_iCloud_Identifier_Response with the iCloud
identifier.

4.6.3.6.3. Command Response

 The accessory shall respond to any invalid opcode with Command_Response with the
Invalid_command error as the responseStatus. See Command Response for details.

4.6.3.7.Debug control point

The debug control point enables you to debug the accessory during development. This control point
shall not be enabled in shipping firmware.
The opcodes for the control point are defined in Table 4-35.

Table 4-33 Current primary key

Operand Data type Size (octets) Description

Current_Primary_key Uint8 28 Current Primary key, Pi

Table 4-34 iCloud identifier

Operand Data type Size
(octets) Description

iCloud_Identifier bytes 60 iCloud identifier set during Find My network pairing

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

43

4.6.3.8.Debug control point procedures

This control point shall be available only when the accessory is in development. In all other states, the
accessory shall return the Invalid_command error as the responseStatus in CommandResponse.

4.6.3.8.1.Set key rotation time-out

The Set_Key_Rotation_Timeout debug command accelerates key rotation by configuring a short time-
out. The accessory shall confirm the completion of the procedure by sending a Command_Response
with the corresponding CommandOpCode and a ResponseStatus value of Success.

4.6.3.8.2.Retrieve logs

The Retrieve_Logs debug command is used to dump logs from an accessory. The logs are encoded in
UTF-8 format. The accessory transfers the logs with multiple Log_Response Indications. The size of
the Log_Response is limited by the MTU size negotiated during connection setup. The accessory
indicates the end of the log dump by sending a Log_Response with empty payload.

Table 4-35 Debug control point

Opcode Opcode
value Operands GATT

subprocedure Direction

Set_Key_Rotation_Timeout 0x0500 Timeout Write To accessory

Retrieve_Logs 0x0501 None Write To accessory

Log_Response 0x0502 LogResponse Indications From accessory

Command Response 0x0503
CommandOp-
Code
ResponseStatus

Indications From accessory

Reset 0x0504 None Write To accessory

UT_Motion_Timers_Config 0x0505

SeparatedUT-
TimeoutSeconds
SeparatedUT-
BackoffTimeout-
Seconds

Write To accessory

Table 4-36 Set key rotation timeout

Operand Data type Size
(octets) Description

Timeout Uint32 4 Time in milliseconds until the next primary
key rotation

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

44

4.6.3.8.3.Reset

The Reset command is used to reset the accessory. The accessory reboots after confirming the reset
procedure by sending a Command_Response with the corresponding CommandOpCode and a
ResponseStatus value of Success.

4.6.3.8.4.UT motion timers config

The UT_Motion_Timers_Config debug command configures TSEPARATED_UT_TIMEOUT and
TSEPARATED_UT_BACKOFF. The accessory shall confirm the completion of the procedure by sending a
Command_Response with the corresponding CommandOpCode and a ResponseStatus value of
Success.

4.7. Firmware update service

4.7.1.Service

This service is required if the accessory is using unified accessory restore protocol to update its
firmware. See Firmware update for details.
The UUID for firmware update service is 0xFD43.

4.7.2.Byte transmission order

All data transmitted and received on the characteristics of this service shall be interpreted with little en-
dian byte ordering.

4.7.3.Characteristics

This service has one characteristic with UUID 94110001-6D9B-4225-A4F1-6A4A7F01B0DE.

Table 4-37 UT Motion Timers Config

Operand Data type Size
(octets) Description

SeparatedUTTimeout-
Seconds Uint32 4

Time in seconds accessory must be in
Separated mode before entering UT mo-
tion detection mode.

SeparatedUTBackoff-
TimeoutSeconds Uint32 4

Time in seconds accessory must be in
Separated mode after UT motion detection
session ends before reentering UT motion
detection session.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

45

A client characteristic configuration descriptor is required for all characteristics.

4.7.3.1.Data control point

The data control point characteristic allows the accessory to exchange Unified Accessory Restore Pro-
tocol data with the owner device. The interpretation of this data is detailed in the Unified Accessory
Restore Protocol Development Guide.

4.8. Fragmentation and reassembly
Characteristics in Find My network service and Firmware update service use payloads that are bigger
than the maximum MTU size. To support read, write and indicate operations on such characteristics,
the host shall support fragmentation and the data packet format outlined in Table 4-40 for Find My
network service and Firmware update service.

If an operation transfers data that is less than the MTU size, the host sets the fragment type in the
header to 1. If an operation transfers data that is greater than or equal to the MTU size, the host
breaks up the data into multiple fragments and transmits each fragment. The last fragment has the
fragment type in the header set to 1. The receiving host reassembles the data payload based on the
headers from the received fragments. The host must ensure all fragments of a message are transferred
before transmitting the next message.

Table 4-38 Firmware update service - characteristics

Characteristic name Requirement Mandatory properties Security permissions

Data Control Point Mandatory Write, Indicate Authorization Required

Table 4-39 Data control point

Characteristic name Data type Size (octets) Description

Data Control Point Bytes Variable See Unified Accessory Restore Protocol
Development Guide for format.

Table 4-40 Data packet format

Header

Byte 0

Payload
Byte 1..MTU-1

Bit 0: Fragment type
 0 — Continuation or
 start of a fragment
 1 — Final fragment
Bit 1:7 Reserved

Data payload

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

46

4.9. Service availability
This table outlines the services and characteristics availability based on the state of the accessory. If a
characteristic is unavailable for a given accessory state, the accessory shall respond to any read or
write request with Invalid_state error as the responseStatus in CommandResponse. See Command
Response for details.

4.10.Serial number payload information
The payload parameters are defined in Table 4-42.

Table 4-41 Service availability

Service Characteristic
Accessory state

Unpaired Nearby
Connected

(Owner)
Connected

(non Owner) Separated

Find My
Network

Pairing
control point Available Not

available
Not
available

Not
available

Not
available

Find My
Network

Configuration
control point

Not
available

Not
available Available Not

available
Not
available

Find My
Network

Paired owner in-
formation control
point

Not
available

Not
available Available Available Available

Find My
Network

Debug
control point Available in debug version only

Firmware
Update All characteristics Not

available
Not
available Available Not

available
Not
available

Accessory
Non-
Owner

All characteristics Available Not
available

Not
available Available Available

Table 4-42 Serial number payload information

Key Size (Bytes) NFC URL Format Notes

b 1 ASCII Hex String Battery status

bt 6 ASCII Hex String Bluetooth MAC address

fv 4 ASCII Hex String FW version, in little endian format

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

47

4.10.1.Encrypted serial number payload

The encrypted payload (e) must be generated using the Apple server encryption key (Q_E), including
the serial number, a counter, and a MAC computed using the KSN symmetric key. The counter (starting
at 0) must monotonically increase every time after a NFC tap occurs (if the accessory uses NFC tag for
serial number lookup) or every time after the Bluetooth serial number lookup control point is triggered.

Encrypted Payload: Serial Number || Counter || HMAC-SHA256(KSN, SerialNumber || Counter || op) ||
op

See ECIES Encryption for generating encrypted payload.

op 4 ASCII
For accessories that include NFC tag for serial
number lookup, op value set to “tap”, otherwise
it’s set to “bt”

e 141 ASCII Hex String See Encrypted serial number payload). Avail-
able only when it’s in paired state.

pid 8 ASCII Hex String Accessory product data

sr 16 ASCII

This is only available when it’s unpaired.
Accessory serial number can be up to 16 bytes
of uppercase alphanumeric characters (A-Z,
0-9). If the serial number is less than 16 bytes,
trailing null padding shall be added.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

48

5. Advertisements

5.1. Bluetooth LE advertising

5.1.1.Payload for pairing

An accessory that is not Find My network paired shall advertise the Find My network service as a
primary service when the user puts the accessory in pairing mode. The Bluetooth LE payload for
pairing is defined in Table 5-1.

5.1.2.Payload for nearby state

After Find My network pairing, the accessory shall advertise the Find My network Bluetooth LE payload.
When the accessory is in the nearby state or connected to a paired owner device, the advertising
payload format must be as defined in Table 5-2.
The nearby or separated state of the accessory determines the current key. The address type shall be
set as a non-resolvable private address, or as a static device address.
The Find My network advertisement payload shall not contain other data types. An accessory must
always advertise the Find My network payloads once every TFMN_ADV_INTERVAL. The accessory may use
another advertising instance to broadcast other data types and services.

Table 5-1 Payload for Pairing state

Byte Value Description

0..5 MAC address

6 0x17 Length of the Find My Service payload

7 0x16 16 bit UUID service data type

8-9 0xFD44 16 bit UUID for Find My network service

10 -17 Product data See Product data

18-25 Accessory category
See Accessory Category for details
Byte 0: Uint8 value of Accessory Category
Byte 1-7: Reserved

26-29 Reserved Reserved

30 Battery state

Battery state definition
0 = Full
1 = Medium
2 = Low
3 = Critically low

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

49

5.1.3. Payload for separated state

When the accessory is in the separated state, the advertising payload format must be as defined in
Table 5-3.

Table 5-2 Payload for nearby state

Byte Value Description

0..5 MAC address

6 0x07 Length of payload

7 0x16 Service Data AD type

8..9 0xFCB2 Unwanted Tracking Service UUID

10 0x01 Network (0x01 — Apple)

11 0x01 Near Owner (1 bit, least significant bit) + reserved
(7 bits)

12

Bits 0–1: Reserved.
Bit 2: Maintained
Bits 3–4: Reserved
Bits 5: 0b1
Bits 6–7: Battery state.

Maintained
Set if owner connected within current key rotation
period (15 minutes)
Battery state definition
0 = Full
1 = Medium
2 = Low
3 = Critically low

13 Bits 0–1: Public key
 Bits 2–7: Reserved

Bits 6–7 of byte 0 of the primary key (Pi)

Table 5-3 Payload for separated state

Byte Value Description

0..5 MAC address

6 0x1E Length of payload (30 bytes)

7 0x16 Service Data AD type

8..9 0xFCB2 Unwanted Tracking Service UUID

10 0x01 Network (0x01 — Apple)

11 0x00 Near Owner (1 bit, least significant bit) + reserved
(7 bits)

Byte

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

50

5.1.4.Advertisement in low battery state

If an accessory is unable to generate or rotate public keys due to low battery, it must stop advertising
Find My network payload. 

12

Bits 0–1: Reserved.
Bit 2: Maintained
Bits 3–4: Reserved
Bits 5: 0b1
Bits 6–7: Battery state.

Maintained
Set if owner connected within current key rotation
period (15 minutes)
0 = Full
1 = Medium
2 = Low
3 = Critically low

13 — 34 Separated public key

Bytes 6–27 of the Public Key, Pi or PWj depending
on accessory state. See Nearby to separated, Sep-
arated to separated, and After power cycle for pos-
sible separated state transitions.

35
 Bits 0–1: Public key
 Bit 2: Motion detected
 Bits 3–7: Reserved

Bits 6–7 of byte 0 of the public key (Pi or PWj)

36 Hint Byte 5 of the Bluetooth address of the current pri-
mary key Pi

Value DescriptionByte

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

51

6. Pairing and Key Management

6.1. Overview
An accessory must be paired to an owner device before it can be locatable. An owner device will initiate
the standard Bluetooth LE encryption before it accesses the Find My network services.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

52

Figure 6-1: Accessory pairing flow

6.2. Pairing
Find My network pairing is initiated by the owner device using the pairing control point procedures. After
an accessory pairs, it must not expose the Find My network pairing control point and it must respond to
any of the pairing control point procedures with an invalid_command error message.
The accessory is associated with the Apple Account that is used to log into the owner device at the time
of Find My network pairing.
An accessory will not be able to Find My network pair if it is paired to an owner device with a different
Apple Account.

6.2.1.Pairing mode

The accessory must require explicit user intent to enable the Find My network pairing mode. When the
user initiates the Find My network pairing mode, the accessory must advertise the Find My network
service as a primary service. See section on pairing payload. The accessory must exit the pairing mode
after 10 minutes.

6.2.2.Generate pairing data

Upon establishing standard Bluetooth LE encrypted pairing session, the accessory must generate
collaborative commitment (C1) to start the pairing process and generate per pairing session encryption
key seed (SeedK1). See Random generation for the generation of SeedK1. The accessory must
regenerate SeedK1 for every new pairing session.
See Collaborative key generation for C1 details.
See Send pairing data pairing control point for details.

6.2.3.Send pairing data

The accessory must send encrypted payload generated using Apple server encryption key (Q_E).
The parameters listed in Table 6-1 are included in generating E2. See ECIES Encryption for E2
generation.

Table 6-1 Payload to generate E2

Key Data type Size  
(octets) Description

SessionNonce bytes 32 Nonce generated by Apple device

Software auth
token bytes 1024

Software authentication token that’s vended by Apple for
each accessory. If the token is less than 1024 bytes, trail-
ing null padding shall be added.

Key

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

53

6.2.4.Finalize pairing

The owner device initiates the finalize pairing process to complete pairing. See Finalize pairing for
details.

6.2.5.Validate and confirm pairing

The accessory must validate the Apple server signature (S2) using an Apple server signature
verification key (Q_A) in order to finalize pairing.
The parameters listed in Table 6-2 are included in generating S2.

Software auth
UUID bytes 16

Accessory UUID that’s associated with software auth. This
shall be transmitted as big-endian byte order (that is, the
most significant bytes are sent first).

Serial Number ASCII 16 Accessory serial number

Product Data bytes 8 Accessory product data

FW Version bytes 4 Accessory firmware version

E1 bytes 113 Encrypted blob generated by owner device

SeedK1 bytes 32 Per pairing session seed for encryption key. See Generat-
ing pairing data for the generation of SeedK1

Data type Size  
(octets) DescriptionKey

Table 6-2 Payload to generate signature message for S2 verification

Key Data type Size  
(octets) Description

Software auth
UUID bytes 16 Accessory UUID that’s associated with software token

SessionNonce bytes 32 Nonce generated by owner device

SeedS bytes 32 Unique server seed for each accessory that’s paired

H1 bytes 32 Compute H1=SHA-256(C2)

E1 bytes 113 Encrypted blob generated by owner device

E3 bytes 1040 Encrypted software token that’s vended by Apple
server for each accessory

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

54

See Apple server public keys and ECDSA signature verification for signature verification key (Q_A)
details.
In case of signature verification failure, the accessory must abort pairing. See Send Pairing Status for
more details about success and error status.
If Apple server signature verification is successful, then the accessory must decrypt Apple server
encrypted blob (E3) using the per pairing session symmetric AES 128-bit key K1 and the initialization
vector IV1.
See Derivation of the pairing session key K1 and initialization vector IV1 for details on obtaining K1 and
IV1. See AES-GCM decryption for E3 decryption details.
If S2 verification and E3 decryption are successful, then the accessory must store a new software token
from E3 and generate a collaborative key (C3) as an acknowledgement to confirm pairing.
The accessory must always use the latest (renewed) software token for any subsequent operations that
require authentication with Apple servers (for example, unpair).
See Collaborative key generation for C3 details. See Finalize pairing for E3 details.

6.2.6.Send pairing status

After successful pairing, the accessory must go into nearby state and send an acknowledgement to the
owner device to confirm the pairing.
The accessory must initialize a unsigned 64-bit counter to 0. This counter is used along with the serial
number in the NFC payload and Bluetooth Serial number lookup control point.
In case of pairing error, the accessory must abort pairing and send a pairing error code. For both
success and error, the accessory must generate an encrypted blob (E4) and send it to the owner
device.
The payload parameters listed in Table 6-3 are included in generating E4. See ECIES Encryption for E4
generation.

See Send pairing status for details.

Table 6-3 Payload to generate E4

Key Data type Size  
(octets) Description

Software auth
UUID bytes 16 Accessory UUID that’s associated with software token

Serial Number ASCII 16 Accessory serial number

SessionNonce bytes 32 Nonce generated by the owner device

E1 bytes 113 Encrypted blob generated by the owner device

Software token bytes 1024 Latest Software token

Status UInt32 4 Success/failure status code

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

55

6.3. Key management

6.3.1.Key definitions

As part of a successful pairing flow, the accessory and the owner device will collaboratively generate
both of the following:

• A master public key, P
• Two symmetric keys, SKN and SKS

A derivative of the public key P will be broadcast over Bluetooth LE. Finder devices can use it to
encrypt their current location and provide it to Apple servers for the accessory owner to download and
decrypt.
Additionally, the accessory and the server generate a shared secret. The shared secret is used to
derive a key and protects requests related to obtaining lost mode information:

• Secret shared with server: ServerSharedSecret
• Symmetric key for pairing session: K1
• Symmetric key for queries with serial number: KSN

6.3.2. Key sequences and rotation policy

The accessory must generate public key sequences with different key rotation intervals, referred to as
primary and secondary keys.

• P and SKN are used to derive the primary key (Pi), which rotates every 15 minutes.
• P and SKS are used to derive the secondary key (PWj), which rotates every 24 hours (that is,

after every 96 iterations of primary key Pi).

6.3.3. Bluetooth advertisement key selection policy

6.3.3.1. After pairing

The accessory must use the primary key Pi (where i=1) as a Bluetooth LE advertisement and enters
nearby state. See Payload for nearby state for details.

6.3.3.2. Nearby to nearby state transition

If at the end of period “i” the accessory is still in nearby state, it must use the next primary key Pi+1
(where “i” is the last primary key index) as a Bluetooth LE advertisement. See Payload for nearby state
for details.

6.3.3.3. Nearby to separated state transition

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

56

When the accessory switches to separated state, it must continue to use the current latched separated
key Pi as a Bluetooth LE advertisement until the end of the current separated key period (4 a.m. local
time). See Payload for separated state for details. See Latch separated key for details.

6.3.3.4. Separated to separated state transition

If at the end of the current separated key period (4 a.m. local time) the accessory is still in separated
state, and it was previously advertising the last primary key Pi right after the state transition, it must
compute j=i/96+1 and the next secondary key PWj and use the latter as a Bluetooth LE advertisement.
See Payload for separated state for details.

6.3.3.5.Separated to connected / nearby state transition

When the accessory switches to nearby state, it must use the current primary key Pi as a Bluetooth LE
advertisement. See Payload for nearby state for details.

6.3.3.6. After power cycle

The accessory must compute j=i/96+1 and the secondary key PWj (where “i” is the current primary key
index) and use the latter as a Bluetooth LE advertisement. See Payload for separated state for details.

6.3.4.Key schedule definitions

a || b denotes concatenation of the values a and b.
G is the base point of the NIST P-224 elliptic curve. See NIST SP 800-186, 3.2.1.2. P-224.
q is the order of the base point G. x(P) denotes the x coordinate of the elliptic curve point P.
ANSI-X9.63-KDF(Z, sharedInfo) denotes the KDF described by SEC1, 3.6.1 ANSI X9.63 Key Derivation
Function. Z is the secret value (the input key material) and sharedInfo is data shared between the two
parties. Hash() is the SHA-256 cryptographic hash function.
Random values and scalars must be generated using a cryptographically secure DRBG. See
Operations.

6.3.4.1. Collaborative key generation

As part of the pairing flow, the owner device and the accessory must collaboratively generate a public
key P and two symmetric keys, SKN and SKS.
1. The accessory generates two P-224 scalars s and r. (See Random scalar generation.) It computes

the public point R = r ⋅ G and sends the value C1 = SHA-256(s || R), where len(C1) = 32 bytes, to
the owner device. (See Send pairing data.)

2. The owner device generates two P-224 scalars s’ and r’. (See Random scalar generation.) It
computes S’ = s’ ⋅ G and R’ = r’ ⋅ G and sends C2 = S’ || R’, where len(C2) = 114 bytes, to the
accessory. (See Finalize pairing.)

3. The accessory checks S’ and R’ and aborts if either is not a valid point on the curve. (See Elliptic
curve point validation.) It computes the final public key P = S’ + s ⋅ G and sends C3 = s || R, where
len(C3) = 85 bytes, to the owner device. (See Send pairing status.)

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

57

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf

4. The owner device aborts if s is not a valid P-224 scalar (see Scalar validation) or R is not a valid
point on the curve (see Elliptic curve point validation) or if C1 ≠ SHA-256(s || R). It computes the
final private key d = s + s’ (mod q) and the public key P = d ⋅ G.

5. Both the owner device and the accessory compute the final symmetric keys SKN and SKS as the
64-byte output of ANSI-X9.63-KDF(x(P), RR), where RR = r ⋅ R’ (for the accessory) or RR = r' ⋅ R
(for the owner). SKN is the first 32 bytes and SKS is the last 32 bytes.

6.3.4.2. Derivation of primary and secondary keys

The accessory must derive primary and secondary keys from the public key P generated at pairing
time. P itself must never be sent out and must be stored in a secure location.
For a given 15-minute period i:

1. Derive SKNi = ANSI-X9.63-KDF(SKNi-1, “update”), where SKN0 is the SKN as agreed upon at
pairing time.

2. Derive ATi = (ui, vi) = ANSI-X9.63-KDF(SKNi, “diversify”) where len(ATi) = 72 bytes and len(ui) =
len(vi) = 36 bytes.

3. Reduce the 36-byte values ui, vi into valid P-224 scalars by computing the following:
a. ui = ui (mod q-1) + 1
b. vi = vi (mod q-1) + 1

4. Compute Pi = ui ⋅ P + vi ⋅ G.

Secondary keys are generated as shown above, using period j instead of i and SKS instead of SKN.
The result will then be called PWj instead of Pi.

6.3.4.3. Derivation of link encryption key LTKi

The Find My network key generation algorithm generates LTKs, rotating every 15 minutes. The
accessory shall use the LTK that corresponds to the current key period as the LTK to encrypt the link on
connection to the owner device. A paired owner device also picks the same LTK to encrypt the link. If
the device is not a paired Apple device or if the LTK results in a failed encryption, the accessory must
disconnect.
The accessory must derive a new link encryption key LTKi for every 15-minute period i. If the paired
owner device is nearby, it can use this key to establish a Bluetooth connection and encrypt the link.
For a given 15-minute period i:

1. Derive the symmetric key SKNi = ANSI-X9.63-KDF(SKNi-1, “update”), where SKN0 is the
symmetric key SKN as agreed upon at pairing time.

2. Derive the Intermediate key IKi = ANSI-X9.63-KDF(SKNi, “intermediate”), where len(IKi) = 32
bytes.

3. Derive the Link Encryption key LTKi = ANSI-X9.63-KDF(IKi, “connect”), where len(LTKi) = 16
bytes.

6.3.4.4. Derivation of ServerSharedSecret

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

58

Upon successful pairing, the accessory must generate and retain ServerSharedSecret, where
ServerSharedSecret is a 32-byte shared secret:
ServerSharedSecret = ANSI-X9.63-KDF(SeedS || SeedK1, “ServerSharedSecret”)

6.3.4.5. Derivation of pairing session key K1 and initialization vector IV1

The 16-byte symmetric key K1 and the 16-byte initialization vector IV1 must be generated as follows:
K1 || IV1 = ANSI-X9.63-KDF(ServerSharedSecret, “PairingSession”)
Where K1 is the first 16 bytes and IV1 the last 16 bytes of the KDF output.

6.3.4.6.Derivation of the serial number protection key

To generate the NFC tap payload, KSN must be generated as follows, where KSN is a 32-byte
symmetric key:
KSN = ANSI-X9.63-KDF(ServerSharedSecret, “SerialNumberProtection”)

6.4. Unpair procedure
Unpair action is initiated by the paired owner device to delete Find My network data and to remove Find
My network pairing on the accessory. See Unpair for the unpair opcode.
The accessory shall complete the unpair procedure only after a Bluetooth LE disconnect is initiated by
the paired owner device. A Bluetooth LE connection timeout or other failures after an unpair action is
initiated does not complete the unpair action. See Factory reset for details on resetting the accessory.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

59

7. Unwanted Tracking Detection

7.1. Overview
During separated state, sound playback from the accessory is designed to bring awareness to the
person with whom it’s detected. Accessories that support motion-triggered UT sound alerts (see
Product-specific requirements) must implement the requirements from this chapter.

7.2. Hardware

7.2.1.Motion detector

The accessory must include a motion detector that can detect accessory motion reliably (for example,
an accelerometer). If the accessory includes an accelerometer, it must be configured to detect an
orientation change of ±10° along any two axes of the accessory.

7.2.2.Sound maker

The accessory must include a sound maker (for example, a speaker) to play sound when motion is
detected in separated state.
It must also play sound when a non-owner tries to locate the accessory by initiating a play
sound command from a non-owner device when the accessory is in range and connectable through
Bluetooth LE. See Play sound—non-owner control point.
The sound maker must emit a sound with minimum 60 phon peak loudness as defined by ISO
532-1:2017. The loudness must be measured in free acoustic space substantially free of obstacles that
would affect the pressure measurement. The loudness must be measured by a calibrated (to the
Pascal) free field microphone 25 cm from the accessory suspended in free space.

7.3. Implementation
After TSEPARATED_UT_TIMEOUT in separated state, the accessory must enable the motion detector (for
example, accelerometer) to detect any motion within TSEPARATED_UT_SAMPLING_RATE1.

If motion is not detected within the TSEPARATED_UT_SAMPLING_RATE1 period, the accessory must stay in this
state until it exits separated state.
If motion is detected within the TSEPARATED_UT_SAMPLING_RATE1 the accessory must play a sound. After first
motion is detected, the movement detection period is decreased to TSEPARATED_UT_SAMPLING_RATE2. The

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

60

accessory must continue to play a sound for every detected motion. The accessory shall disable the
motion detector for TSEPARATED_UT_BACKOFF under either of the following conditions:

• Motion has been detected for 20 seconds at TSEPARATED_UT_SAMPLING_RATE2 periods.
• Play sound has been attempted 10 times.

If the accessory is still in separated state at the end of TSEPARATED_UT_BACKOFF, the UT behavior must
restart.
A Bluetooth LE connection from an owner Apple device must reset the separated behavior and
transition the accessory to connected state.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

61

8. NFC Requirements

8.1. Overview
Accessories that include NFC (see Serial number lookup) must support the requirements from this
chapter.

8.2. Hardware
These are the hardware requirements for accessories that include NFC:

• The accessory must use a programmable NFC tag.
• NFC tags must use the NFC Data Exchange Format (NDEF) as defined by NFC Forum™ in

NDEF 1.0 NFCForum‑TS‑NDEF 1.0.
• An NDEF message is defined as a group of individual NDEF records as defined by NFC Forum™

in NFC Record Type Definition (RTD) RTD 1.0 NFCForum‑TS‑RTD 1.0.
• The Find My network payload for NFC tags must use NDEF URI Record Type Definition as de-

fined by NFC Forum™ in URI Record Type Definition RTD‑URI 1.0 NFCForum‑TS‑RTD URI 1.0.
• The minimum payload that must be supported is 30 bytes.
• NFC tag types must be type 2 or greater.
• The NFC tag should not be scannable when the Find My network-enabled accessory is still in the

packaging.
• The Find My network payload must be scannable when holding the top of the iOS controller near

the center of the NFC tag on the accessory. Recommended NFC tag performance guidelines are
defined by NFC Forum™ in Tag Performance Requirements Document.

• The NFC on the accessory must be configured as a NFC tag.

8.3. Implementation
Accessories must advertise the following payload over NFC.

• Unpaired accessories advertise the following payload:  
https://found.apple.com/accessory?pid=%04x&b=%02x&fv=%08x&bt=%s&sr=%s

• Paired accessories advertise the following payload: 
https://found.apple.com/accessory?pid=%04x&b=%02x&fv=%08x&e=%s&op=%s 

Please see Serial number payload information for payload parameters.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

62

9. Timers and Constants

9.1. Overview
Table 9-1 defines the timers and constants used by the Find My network protocol.

Table 9-1 Timers and constants

Timer Name Value Description

TSEPARATED_UT_SAMPLING_RA
TE2

0.5 seconds Motion detector sampling rate when movement is detected
in separated state.

TRECONNECT_ADV_INTERVAL 30 ms Advertising interval for reconnection attempt when a per-
sistent connection is lost

TRECONNECT_ATTEMPT_TIMEOU
T

3 seconds Advertising duration for reconnection attempt

TFMN_ADV_INTERVAL 2 seconds Find My network Bluetooth LE Advertising Interval.

TSEPARATED_UT_SAMPLING_RA
TE1

10 seconds Sampling rate when Motion detector is enabled in separat-
ed state.

TFMN_SEPARATED_SN_LOOKUP_
INTERVAL

5 minutes Sampling rate when serial number lookup is enabled in
separated state.

TNEARBY 15 minutes Default value.
Configured by the owner device on connection.

TSEPARATED_UT_BACKOFF 6 hours Period to disable motion detector if accessory is in sepa-
rated state.

TSEPARATED_UT_TIMEOUT

random val-
ue between
8-24 hours
chosen from
a uniform
distribution

Time span in separated state before enabling motion de-
tector.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

63

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

64

10. Firmware Update

10.1.Overview
The unified accessory restore protocol (UARP) should be used to update firmware on an accessory.
This protocol uses the Firmware update service to transfer UARP messages between the accessory
and the owner device.
Details about the unified accessory restore protocol will be found in the Unified Accessory Restore
Protocol Development Guide.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

65

11. Accessory Categories

Accessory manufacturer’s must pick an accessory category that closest resembles their physical
product. The accessory categories outlined here are used for presentation purpose by the Find My app.
If none of the accessory categories provided in this list match the physical product, Other must be
chosen.

Table 11-1 Accessory Categories

Accessory Category Value

Finder 1

Other 128

Luggage 129

Backpack 130

Jacket 131

Coat 132

Shoes 133

Bike 134

Scooter 135

Stroller 136

Wheelchair 137

Boat 138

Helmet 139

Skateboard 140

Skis 141

Snowboard 142

Surfboard 143

Camera 144

Laptop 145

Watch 146

Flash drive 147

Drone 148

Accessory Category

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

66

Headphones 149

Earphones 150

Inhaler 151

Sunglasses 152

Handbag 153

Wallet 154

Umbrella 155

Water bottle 156

Tools or tool box 157

Keys 158

Smart case 159

Remote 160

Hat 161

Motorbike 162

Consumer electronic device 163

Apparel 164

Transportation device 165

Sports equipment 166

Personal item 167

Luggage Tag 168

Reserved for future use 2-127, 169+

ValueAccessory Category

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

67

12. App Integration

12.1.Overview
An accessory manufacturer may optionally provide an iOS accessory app to allow users to setup,
configure and use their accessories. This chapter defines features an accessory app may include to
help integrate an iOS accessory app with the Apple Find My app and Find My network.

12.2.General
Universal Links allow an iOS accessory app to interact with the Apple Find My app to allow basic
operations with Find My network accessories. By leveraging Universal Links, an accessory app has the
ability to trigger a pairing request in the Find My app, jump directly to the detail card of the accessory,
including showing updated offline locations, and also allow linking to the Apple Find My app to remove
the paired accessory from the Find My network. An accessory app should programmatically build the
URL’s to link to the Apple Find My app using the formats specified below and then call openURL from
your application to launch the Apple Find My app. See Universal Links Apple Developer documentation
for more details.

12.3.Supported URLs

12.3.1.Setup item

12.3.1.1.Supported platform

iOS 14.5 or later

12.3.1.2.Details

An accessory app should instruct users that after pairing they should return to the app for continuation
of any additional setup procedures. At this point the accessory app should query the accessory to
determine Find My pairing status.
Example URL:
http://findmy.apple.com/item?action=setup

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

68

https://developer.apple.com/documentation/xcode/allowing_apps_and_websites_to_link_to_your_content

12.3.2.Select item

12.3.2.1.Supported platform

iOS 14.5 and macOS 11.5 or later

12.3.2.2.Details

An accessory app can directly deep link to your accessory by passing the serial number and
manufacturer name to the Apple Find My app. The Apple Find My app will switch to the appropriate
items tab, select the item, and present the details pane as well as fetch updated offline location for the
accessory.
Example URL:
http://findmy.apple.com/item?serial=123456789&manufacturer=My%20Company

12.3.3.Remove item

12.3.3.1.Supported platform

iOS 14.5 or later

12.3.3.2.Details

An accessory app can link directly to Apple Find My app and bring up the removal sheet, which will
unpair the accessory from Apple Find My app and Find My network. Licensee app should verify the

Table 12-1 Setup item

Property Example Description

Setup Link Base
URL (required)

http://findmy.apple.com/item?
action=setup

Base URL for Setup Universal Link

Table 12-2 Select item

Property Example Description

Details Base URL
(required)

http://findmy.apple.com/item Base URL for details Universal Link

Serial (required) serial=123456789 Serial number of the item you are selecting.

Manufacturer (re-
quired)

manufacturer=My%20Com-
pany

Manufacturer should match the manufacturer
string shown in the details pane of the Find
My app.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

69

http://findmy.apple.com/item?action=setup

removal was successful by querying the accessory directly when users make their way back to your
app.
Example URL:
http://findmy.apple.com/item?action=remove&serial=123456789&manufacturer=My%20Company

Table 12-3 Remove item

Property Example Description

Removal Base (re-
quired)

http://findmy.apple.com/item?
action=remove

Base URL for removal Universal Link

Serial (required) serial=123456789 Serial number of the item you are selecting to
remove.

Manufacturer (re-
quired)

manufacturer=My%20Com-
pany

Manufacturer should match the manufacturer
string showed in the details pane of the Find
My app.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

70

13. Revision History

This chapter describes the changes to Find My Network Accessory Specification from the previous
revision.

• Updated Section 1 to Section 8

• Updated 3.2 General

• Updated Section 3.3.1 Bluetooth

• Updated 3.3.4 Serial number lookup

• Added clarifications on Accessory Category bytes, Table 4-5 and Table 5-1  

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

71


Apple Inc.
Copyright © 2025 Apple Inc.
All rights reserved.

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: the receiving party is
hereby authorized to store this document on a single computer for personal use only and to print copies of this document for personal use
subject to the terms of the Agreement provided that the documentation contains Apple’s copyright notice.

Except as set forth in the Agreement, no licenses, express or implied, are granted with respect to any of the technology described in this
document. Apple retains all intellectual property rights associated with the technology described in this document. This document is intended
to be used in the development of solutions for Apple‐branded products.

Apple, the Apple logo, Find My, iPad, iPhone, iPod touch, Mac, macOS, and watchOS are trademarks of Apple Inc., registered in the U.S. and
other countries.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

Java is a registered trademark of Oracle and/or its affiliates.

Even though Apple has reviewed this document, THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT REPRESENTATION,
WARRANTY, UPGRADES OR SUPPORT OF ANY KIND. APPLE AND APPLE’S DISTRIBUTORS, AFFILIATES, LICENSOR(S) AND
SUPPLIER(S) (“APPLE PARTIES”) EXPRESSLY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND CONDITIONS, EXPRESS OR
IMPLIED, INCLUDING THE IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OF
FITNESS FOR A PARTICULAR PURPOSE, OF NON-INFRINGEMENT AND OF ACCURACY. NONE OF THE APPLE PARTIES
WARRANTS THAT THE SPECIFICATION OR ANY ACCESSORY WILL MEET YOUR REQUIREMENTS, THAT DEFECTS IN THEM WILL
BE CORRECTED OR THAT THEY WILL BE COMPATIBLE WITH FUTURE APPLE PRODUCTS. NO ORAL OR WRITTEN INFORMATION
OR ADVICE GIVEN BY ANY APPLE PARTY OR AN APPLE AUTHORIZED REPRESENTATIVE WILL CREATE A WARRANTY.

EXCEPT TO THE EXTENT SUCH A LIMITATION IS PROHIBITED BY LAW, IN NO EVENT WILL ANY APPLE PARTY BE LIABLE FOR
ANY INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL, EXEMPLARY OR PUNITIVE DAMAGES, INCLUDING LOST PROFITS,
LOST REVENUES OR BUSINESS INTERRUPTIONS, ARISING OUT OF OR RELATING TO THIS DOCUMENT UNDER A THEORY OF
CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCTS LIABILITY OR OTHERWISE, EVEN IF ANY APPLE PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL PURPOSE
OF ANY REMEDY. IN NO EVENT WILL THE APPLE PARTIES’ TOTAL LIABILITY TO YOU FOR ALL DAMAGES AND CLAIMS UNDER
OR RELATED TO THIS DOCUMENT EXCEED THE AMOUNT OF US$50.00.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the
above limitation or exclusion may not apply to you.

2025-06-11 | Copyright © 2025 Apple Inc. All Rights Reserved.

72

	Introduction
	Requirements, recommendations, and permissions
	Terminology

	Core Concepts
	Overview
	Find My app
	Transport
	Operation
	Roles
	Owner device
	Accessory
	Find My network
	Apple server

	Features
	Unwanted tracking detection
	Lost mode
	Play sound

	States
	Unpaired
	Connected
	Nearby
	Separated

	Requirements
	Overview
	General
	Hardware
	Bluetooth
	Accessories that advertise non-Find My network Bluetooth payload
	Find My device naming
	Product-specific requirements
	Find My on-product mark
	Serial number requirement
	Serial number lookup
	Find My network disable
	Find My network pairing mode
	Reset
	Clock accuracy

	Cryptography
	Operations
	Implementation
	Endianness and wire format
	Random scalar generation
	Scalar validation
	Elliptic curve point validation
	ECDSA signature verification
	ECIES encryption
	AES-GCM decryption
	Random generation

	Software authentication
	Apple server public keys
	Power cycle
	Firmware updates

	Bluetooth Requirements
	Overview
	Bluetooth advertising
	Bluetooth connection
	Bluetooth host
	Services
	MTU size
	Link encryption key
	Handling concurrent operations
	Time-out
	Indications

	Accessory non-owner service
	Service
	Byte transmission order
	Characteristics
	Product data
	Manufacturer name
	Model name
	Accessory category
	Protocol Implementation Version
	Accessory capabilities
	Firmware version
	Find My network version
	Battery type
	Battery level
	Network ID
	Non-owner control point
	Non-owner control point procedures
	Play sound—Non-owner control point
	Get Serial Number

	Find My network service
	Service
	Byte transmission order
	Characteristics
	Pairing control point
	Pairing control point procedures
	Initiate pairing
	Send pairing data
	Finalize pairing
	Send pairing status
	Pairing complete
	Configuration control point
	Configuration control point procedures
	Play sound—owner control point
	Persistent connection status
	Set nearby timeout
	Unpair
	Configure separated state
	Latch separated key
	Set max connections
	Set UTC
	Keyroll indication
	Command response
	Get multi status response
	Paired owner information control point
	Paired owner information control point procedures
	Get Current Primary Key
	Get iCloud Identifier
	Command Response
	Debug control point
	Debug control point procedures
	Set key rotation time-out
	Retrieve logs
	Reset
	UT motion timers config

	Firmware update service
	Service
	Byte transmission order
	Characteristics
	Data control point

	Fragmentation and reassembly
	Service availability
	Serial number payload information
	Encrypted serial number payload

	Advertisements
	Bluetooth LE advertising
	Payload for pairing
	Payload for nearby state
	Payload for separated state
	Advertisement in low battery state

	Pairing and Key Management
	Overview
	Pairing
	Pairing mode
	Generate pairing data
	Send pairing data
	Finalize pairing
	Validate and confirm pairing
	Send pairing status

	Key management
	Key definitions
	Key sequences and rotation policy
	Bluetooth advertisement key selection policy
	After pairing
	Nearby to nearby state transition
	Nearby to separated state transition
	Separated to separated state transition
	Separated to connected / nearby state transition
	After power cycle
	Key schedule definitions
	Collaborative key generation
	Derivation of primary and secondary keys
	Derivation of link encryption key LTKi
	Derivation of ServerSharedSecret
	Derivation of pairing session key K1 and initialization vector IV1
	Derivation of the serial number protection key

	Unpair procedure

	Unwanted Tracking Detection
	Overview
	Hardware
	Motion detector
	Sound maker

	Implementation

	NFC Requirements
	Overview
	Hardware
	Implementation

	Timers and Constants
	Overview

	Firmware Update
	Overview

	Accessory Categories
	App Integration
	Overview
	General
	Supported URLs
	Setup item
	Supported platform
	Details
	Select item
	Supported platform
	Details
	Remove item
	Supported platform
	Details

	Revision History

